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Abstract

Background—Many studies have reported associations between ambient particulate matter 

(PM) and adverse health effects, focused on either short-term (acute) or long-term (chronic) PM 

exposures. For chronic effects, the studied cohorts have rarely been representative of the 

population. We present a novel exposure model combining satellite aerosol optical depth and land-

use data to investigate both the long- and short-term effects of PM2.5 exposures on population 

mortality in Massachusetts, United States, for the years 2000–2008.

Methods—All deaths were geocoded. We performed two separate analyses: a time-series 

analysis (for short-term exposure) where counts in each geographic grid cell were regressed 

against cell-specific short-term PM2.5 exposure, temperature, socioeconomic data, lung cancer 

rates (as a surrogate for smoking), and a spline of time (to control for season and trends). In 

addition, for long-term exposure, we performed a relative incidence analysis using two long-term 

exposure metrics: regional 10 × 10 km PM2.5 predictions and local deviations from the cell 

average based on land use within 50 m of the residence. We tested whether these predicted the 

proportion of deaths from PM-related causes (cardiovascular and respiratory diseases).

Results—For short-term exposure, we found that for every 10-μg/m3 increase in PM2.5 exposure 

there was a 2.8% increase in PM-related mortality (95% confidence interval [CI] = 2.0–3.5). For 

the long-term exposure at the grid cell level, we found an odds ratio (OR) for every 10-μg/m3 

increase in long-term PM2.5 exposure of 1.6 (CI = 1.5–1.8) for particle-related diseases. Local 

PM2.5 had an OR of 1.4 (CI = 1.3– 1.5), which was independent of and additive to the grid cell 

effect.

Conclusions—We have developed a novel PM2.5 exposure model based on remote sensing data 

to assess both short- and long-term human exposures. Our approach allows us to gain spatial 

resolution in acute effects and an assessment of long-term effects in the entire population rather 

than a selective sample from urban locations.
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Multiple studies in the United States and worldwide have shown associations between 

exposure to ambient particulate matter (PM) and adverse health effects.1–6 These adverse 

health effects include asthma,7 cardiovascular problems,3,8–12 respiratory infections,13–17 

lung cancer, and mortality.18–22

Previous studies have generally focused on either long-term (chronic) PM exposure23–26 or 

short-term (acute) PM exposure.15,27,28 In addition, studies of acute effects typically depend 

on PM2.5 monitors within their study domain. Because PM2.5 concentrations vary spatially 

within the study domain, this introduces exposure error and likely produces a combination 

of downward bias in the effect estimates and wider confidence intervals (CIs) due to a 

mixture of classical and Berkson error.29 The relative magnitude of the two effects is not yet 

clear.

The lack of spatially resolved daily PM2.5 concentration data restricts most studies to areas 

surrounding monitoring sites, mostly in cities, which may not be representative of the 

population as a whole. Such studies have used mostly city-level contrasts, although more 

recent studies have incorporated estimates from land-use regression. For example, cohort 

studies with few exceptions (eg, the Six City Study) rely upon convenience samples that are 

not representative of the population either in demographic or geographic characteristics, 

raising questions about generalizability and the possibility of selection bias. Suburban, 

exurban, rural, and semirural populations are particularly under-represented. Similarly, in 

many studies, minorities and people with lower educational attainment are under-

represented. In addition, although land-use regression can produce estimates of exposure at 

participants addresses, the lack of monitoring in rural areas to calibrate these models has led 

to the exclusion of participants in such locations even when in the cohort.24

Various studies have tried to address this issue. There are some population-based chronic-

exposure studies that have assessed within-city exposure and mortality. Naess et al30 looked 

at chronic exposure to NO2, PM10, and PM2.5 in 470 neighborhoods and all-cause and 

cause-specific mortality in Oslo, Norway. Exposures were consistently associated with all 

causes of death in both age groups for men and women. The associations were particularly 

strong for chronic obstructive pulmonary disease, which appeared linear whereas 

cardiovascular causes and lung cancer seemed to have threshold effects. Gan et al31 looked 

at specific traffic-related air pollutants associated with coronary heart disease (CHD) 

morbidity and mortality in Metropolitan Vancouver. This population-based cohort study 

included a 5-year exposure period and a 4-year follow-up period. Individual exposures to 

traffic-related air pollutants including black carbon, PM2.5, NO2, and nitric oxide were 

estimated at residences of the subjects using land-use regression models. An interquartile 

range elevation in the average concentration of black carbon was associated with a 6% 

increase in CHD mortality (95% CI = 3–9%) after adjusting for age, sex, preexisting 

comorbidity, neighborhood socioeconomic status, and copollutants (PM2.5 and NO2). Few 

studies on the long-term effect of exposure have looked at broader populations. Crouse et 

al32 looked at the risk of cardiovascular mortality in relation to long-term exposure and 

PM2.5 in Canada. They assigned estimates of exposure to ambient PM2.5 derived from 

satellite observations to a cohort of 2.1 million Canadian adults. They used both standard 

Cox proportional survival models and nested, spatial random-effects survival models. For 
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the Cox models, they showed hazard ratios (HRs) of 1.15 (95% CI = 1.13–1.16) from 

nonaccidental causes and 1.31 (95% CI = 1.27–1.35) from ischemic heart disease for each 

10-μg/m3 increase in concentrations of PM2.5. Using spatial random-effects models 

controlling for the same variables, they showed HRs of 1.10 (95% CI = 1.05–1.15) and 1.30 

(95% CI = 1.18–1.43), respectively.

Other studies have used new methodological approaches in air pollution studies regarding 

short- and long-term exposure. Künzli33 presents several key approaches in studies of 

ambient air pollution. He discusses among other issues how cross-city longitudinal data are 

needed to estimate both short- and long-term effects, and how time-series studies have 

previously neglected the long-term component. They also show the importance of 

disentangling the contributions of different time domains of air pollution exposure. Künzli 

shows that by considering the geography of susceptibility and exposure, and by using more 

sophisticated approaches to acknowledge the “geographies of time,” studies on the total 

health effects of ambient air pollution could be considerably improved. Burnett and 

colleagues34 showed that results from time-series studies are equivalent to estimates 

obtained from a dynamic population in which each person’s mortality risk can be 

summarized as the daily number of deaths. The authors showed that the association between 

temporal variation in the environmental covariates and the survival experience of members 

of the dynamic population can be estimated by regressing the daily number of deaths on the 

daily value of the environmental covariates, as is done in time-series mortality studies.

We recently presented a novel method of assessing temporally and spatially resolved PM2.5 

exposures for epidemiological studies using satellite aerosol optical depth measurements, 

which makes it possible to predict daily PM2.5 concentration levels at a 10 × 10 km spatial 

resolution.35 In this previous work, we examined the relationship between PM2.5 ground 

measurements and Moderate Resolution Imaging Spectroradiometer Satellite–derived 

aerosol optical depth measurements in New England during the period of 2000–2008. Using 

multistage prediction models, we initially performed day-specific calibrations of the satellite 

using ground PM2.5 measurements from all monitoring sites in New England and 

incorporating land-use regression and meteorologic variables. This use of daily calibration 

allows us to get considerably better predictive power, and hence lower exposure error. Later, 

spatial smoothing was used to predict PM2.5 concentrations for grid cell-day combinations 

when satellite measures are not available. Because our models produced daily PM2.5 

predictions, not monthly or yearly, this allowed us to estimate the health effects of both 

short-term and long-term exposures. In addition, the availability of satellite measurements in 

every grid cell improved spatial predictions, compared with land-use regression models 

calibrated with monitors in a limited number of locations. Finally, we incorporated land-use 

regression as a final component, which estimates the difference between neighborhood level 

(grid cell) values and address-specific PM2.5 based on land-use terms within 50 m of the 

residential address, allowing us to estimate long-term exposure at an address-specific level.

In this follow-up article, we use our model predictions to study the association between both 

long- and short-term PM2.5 exposure and mortality in the entire population of Massachusetts 

during the period 2000–2008.
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METHODS

Study Domain

The study was conducted in Massachusetts (Figure). To avoid boundary effects, some PM2.5 

data from neighboring states were included in the analysis.

Exposure Data

Data for both short- and long-term PM2.5 exposures for the years 2000–2008 were assessed 

using recently developed prediction models.35 The Massachusetts exposure dataset 

encompasses daily PM2.5 predictions at a resolution of 10 × 10 km. In addition, we predicted 

365-day moving averages of grid-cell PM2.5 to look at chronic effects and local deviations 

from the grid-cell predictions (from land-use regression) on a 50 × 50 m spatial resolution 

across the state (Figure) during the entire study period. Because the Boston metropolitan 

area within the Route 128 comprises 15 cells, this allows us to resolve exposure within the 

city. The local land-use component allows further resolution to the address level, but only 

for long-term exposure. For more detailed information on the prediction model please refer 

to Kloog et al.35 We then generated daily and long-term PM2.5 exposure to each decedent 

based on their address.

Our generated predictions have multiple advantages over other approaches commonly used 

in other health studies such as inverse distance weighting, kriging, etc. First, the smooth 

function of latitude and longitude is effectively a weighting scheme, with some important 

differences. The weights do not have to be isotropic, they can have a functional form be 

other than inverse distance squared, and they can vary every 2 months (unlike distance-

based weights, which are fixed). To this we add the additional information provided by the 

daily satellite measurement near the residence and the local land-use regression results. 

There are many US cities with only one monitor close to the city. In such cases, inverse 

distance weighting would be of no practical use, whereas our methods would produce 

exposure contrasts across the various cities’ 10 × 10 km grid, as well as the local land-use 

regression.

Mortality Data

Individual georeferenced mortality records were obtained from the Massachusetts 

Department of Public Health for all available years (2000–2008). The dataset included 

468,570 deaths. Our model can include locations both proximate and far from ambient 

monitoring stations. We defined “near” as within 20 km of an ambient monitor. The near 

areas contain 80% of the population, with the rest in the “far” areas (more than 20 km from 

an ambient monitor). Public health records included residential location, place of death, age, 

sex, date of death, ethnicity, education, and primary cause of death. From these data, we 

constructed daily death counts for each 10 × 10 km grid cell for our time-series analysis; 

long-term exposure was assigned based on residential address.

Mortality Covariates

Temperature Data—As in other PM mortality studies, temperature was used as a 

covariate.36,37 Temperature data were obtained from the national climatic data center.38 
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Only continuously operating stations with daily data from 2000 to 2008 were used. Grid 

cells were matched to the closest weather station.

Socioeconomic Data—Socioeconomic variables for the tract level were obtained from 

the 2000 US census with data on social, economic, and housing characteristics.39 

Socioeconomic variables at the census-tract level included percent minorities, age, 

education, and income. In addition we used individual socioeconomic variables from the 

Massachusetts Department of Public Health mortality records (race, education, and sex).

Smoking Surrogate—As a surrogate for cell-specific smoking experience, we used the 

long-term average lung cancer mortality rate in each cell as a control variable. Lung cancer 

data were obtained through the Massachusetts Department of Public Health.

Statistical Methods

Geocoded mortality data were matched with our exposure estimates. Because the mortality 

datasets did not include changes of residence, we had to assume when looking at long-term 

exposure that the decedents had lived at their current address for several years. This 

introduces some exposure misclassification. However, we think the misclassification is 

relatively minor. The average age of decedents in our study population was 75 years, and in 

the northeast United States, people above the age of 75 have limited mobility (only 2% of 

the population changed residence during 2009–2010).40

We assessed the acute effects of exposure to PM2.5 by assigning to decedents the grid 

exposure (on the day of death and preceding 3 days) corresponding to their residence for 

deaths outside of hospital. Deaths in hospital may have occurred outside the grid cell of 

residence, and so for those deaths, we assigned the mean predicted PM2.5 concentration in 

all grid cells within 30 km of the residence, again for the day of death and up to 3 preceding 

days. Most time-series studies have reported the strongest acute associations with mean 

PM2.5 for the current and previous day, rather than same day exposure41 or longer lags. We 

therefore took current and previous day exposures as our primary analysis. As a sensitivity 

analysis, we also examined PM2.5 exposure 2 days before death (lag2) and PM2.5 exposure 3 

days before death (lag3). Specifically, we modeled the mortality rate λit in the ith cell on the 

tth day as follows:

where

where PMit is the daily PM2.5 concentration in cell i, λ(t) is a smooth function of time, 

temporal covariates are temperature and day of the week, spatial covariates are 

socioeconomic factors and a surrogate for long-term smoking history, and ei is the 

remaining unexplained difference in mortality rate between cell i and other cells (treated as a 
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mean zero normal random effect with variance estimated from the data). This model 

expands the usual time-series analysis by including spatial covariates and random intercepts 

for small areas.

The specific covariates we used were a linear and quadratic term for temperature with the 

same moving average as PM2.5, age, percent minorities, median income, percent of people 

without high school education, and lung cancer rate as a surrogate for long-term smoking 

history. λ(t) was estimated with a natural cubic spline with 45 degrees of freedom (5 df per 

year). We used an interaction term between in-hospital death and short-term exposure, to 

test whether location modified the association.

Long-term exposure was analyzed through a relative incidence analysis. We defined 

particle-related deaths as those from cardiovascular and respiratory diseases and contrasted 

those with mortality unrelated to air pollution (accidental death, cancer [except lung cancer], 

homicide, etc.). Specifically we fit the following model:

where Mortij is the response (particle-related or nonrelated death) for the ith subject in grid j, 

α and uj are the fixed and random (grid-specific) intercepts, respectively, PMit is 365- day 

moving average ending on day t, PMLi is the local (50 m) deviation of PM2.5 from the long-

term grid-cell average, X3i, etc. denote the set of covariates of interest used in the model, and 

σu
2 is the variance of the random effects.

We also looked at various interactions of interest, including interactions between near and 

far areas and both short-term and long-term exposure as well as interactions between low 

and high education groups (based on individual college education) and long-term PM2.5 

exposure. We considered whether effect estimates differed between the two main cause-

specific mortality rates by performing a logistic analysis of cardiovascular and respiratory 

mortality.

RESULTS

Of the 468,570 deaths included in our analyses, 46% were men, 94% were white, and 20% 

had higher than a high school education. The average age at death was 75 years (Table 1).

Table 2 summarizes of the exposure and temperature variables used in the analysis. Various 

lags were tested in the time-series analysis, with the strongest based on the mean of lag01. 

The results for lag01 are presented as commonly reported in many previous studies.14,24 For 

every10-μg/ m3 increase in short-term PM2.5 exposure, there was a 2.8% increase in 

mortality (95% CI = 2.0–3.5). There was also a significant interaction between short-term 

pollution and near and far locations (P < 0.001). For every10-μg/m3 increase in short-term 

PM2.5 exposure in the “far” group, there was a 1.4% increase in mortality (95% CI = 0.8–

2.0%). For every10-μg/ m3 increase in short-term PM2.5 exposure in the “near” group, there 

was a 4.5% increase in mortality (95% CI = 2.6–6.5%).

Kloog et al. Page 6

Epidemiology. Author manuscript; available in PMC 2015 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Table 3 presents the odds ratios (ORs) for cardiovascular and respiratory mortality for a 10-

μg/m3 increase in long-term grid-cell PM2.5 exposure for the full datasets and various 

interactions. The OR was 1.6 (CI = 1.5–1.8) for cardiovascular and respiratory mortality 

relative to deaths from other causes. Local PM2.5 had an OR of 1.4 (CI = 1.3–1.5) in the 

same model. Because local PM2.5 was constructed as the address-specific deviation from the 

grid-cell average, these effects are independent and additive. There was a significant 

interaction between education group and long-term pollution (P<0.001). The OR for the 

high education group (college education) was 1.4 (CI = 1.2–1.6), whereas for the remainder 

the OR was 1.9 (CI = 1.6–2.1). There was also a significant interaction between long-term 

pollution and near and far groups (P < 0.001). The OR for subjects living more than 20 km 

from a monitor was 1.3 (CI = 1.1–1.6), whereas for those living closer, the OR was 1.7 (CI = 

1.5–1.9). The OR for nonwhites (OR 2.9, CI = 1.9–4.5) was higher than for whites (OR 1.6, 

CI = 1.4–1.7).

The logistic regression comparing cardiovascular and respiratory mortality showed no 

appreciable differences both for the regional PM2.5 and local PM2.5 exposure. Similarly, 

there were no important risk differences between people who died in the hospital and those 

who died at home.

DISCUSSION

The main feature of this study is the use of novel hybrid prediction models that examine 

short- and long-term exposure associations with mortality, and include the entire population 

of the state. Unlike traditional land-use regressions, this model produces daily predictions. 

This model also performs better in regions far from monitors because the satellite data 

provide exposure data. In addition, these models can 1) control for small area socioeconomic 

status variables in time-series analysis and look for effect modification by the same 

variables; 2) test whether the PM2.5 slope is different in people residing far from monitors; 

3) assess chronic effects of particles using the entire population, again including people 

distant from monitors; 4) estimate effects of local traffic–derived particles independent of 

regional particles; and 5) reduce exposure error and hence downward bias in slopes, and 

upward bias in CIs. Key findings include differences in the slopes of acute and chronic 

PM2.5 between locations closer or more distant from monitoring stations, interactions of 

chronic exposure with race and socioeconomic status (with less advantaged groups having 

stronger associations), and an additional effect of traffic particles generated near the address 

of the decedents. The Six City Study42,43 found that a 1-year period for chronic exposure 

captured essentially the entire effect. Hence our use of a 1-year average should be sufficient 

to capture the long-term effect of PM2.5 exposure.

It is instructive to compare these results with results of previous time-series and cohort 

studies. Zanobetti and colleagues studied the acute effect of fine and coarse particulate air 

pollution on mortality in a national analysis of 112 cities. 44 For cities similar to cities in our 

study (the northeast area, grouped as cities with warm summer-continental), a 10-μg/m3 

increase in PM2.5 was associated with a 1.19% increase (95% CI = 0.73–1.64) in total 

mortality. A key difference is that they assigned the same daily exposure to all people in 

each city, whereas we were able to assign different exposures to people on a relatively small 
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grid. Another key difference is that they analyzed only cities, whereas we could analyze an 

entire state. Our study finds larger and more precise effect-size estimates despite analyzing 

fewer deaths, possibly due to reduced exposure error.

Berkson measurement error for exposure would be expected to bias standard errors upward, 

but not bias effect sizes down, whereas classical exposure error would do the opposite. If 

exposure error was a mixture of these two types, reduced exposure error could produce 

results such as we observed. This does not preclude other explanations.

Miller et al45 reported a relative risk of 1.76 for cardiovascular deaths per 10 μg/m3 using 

within-city exposure, and Puett and colleagues24 used exposure from a land-use regression 

analysis to estimate a hazard ratio of 1.26 for all-cause mortality (95% CI = 1.02–1.54) with 

each 10-μg/m3 increase in annual PM2.5 exposure. These estimates are similar to ours and 

higher than in older studies that did not have geographically resolved exposure. That 

suggests the exposure error in cohort studies is predominantly classical. The similarly larger 

estimate in our study supports this conclusion, and also extends the results to suburban and 

rural residents. Furthermore, our use of satellite exposure data allowed a much larger sample 

size, with more deaths than in the American Cancer Society (ACS) study, the Nurses’ 

Health Study, and the Six City Study combined. We confirm the results of the ACS study 

that people with less education have greater susceptibility to particles, although the 

association in the college educated is still substantial, and with a relatively narrow CI.

Although covariate control is a limitation of this analysis, the use of fine-scale 

geographically resolved exposure is a clear advantage over studies such as the first reports 

from ACS study, which used metropolitan areas often encompassing multiple counties, and 

often with only one monitor available to assign exposure. A reanalysis of the data by Willis 

et al,46 restricted to people who live closer to the monitor, reported a doubling of the 

estimate slope per unit exposure, suggesting substantial downward bias by classical 

measurement error. These results plus the similarity between our estimates and other 

estimates based on geographically resolved exposure24,47 provides some assurance about the 

generalizability of those estimates. As noted above, we see smaller effects in locations more 

than 20 km from monitors, which generally have lower population density. This may reflect 

different composition (more traffic particles in the more densely populated regions), 

although further analysis is needed to confirm this. Consistent with this, we found that 

deviations from grid-cell-average PM2.5 predicted by land-use terms within 50 m of 

residence had additional predictive power for mortality. This also suggests that traffic 

particles are more toxic.

A key difference between our analysis and the ACS or Nurses Health study is that they 

oversampled the highly educated, undersampled minorities. In general, cohort studies of the 

long-term effects of PM2.5 have been nonrepresentative. Our finding of a substantially 

stronger associations in nonwhites and the less educated raises an important environmental 

justice concern.

Another major limitation of the present study is the spatial resolution of 10 × 10 km. We 

compensate for this in our analysis of chronic effects by using a land-use regression to 
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compute a local PM variable. Better resolution of the satellite data would clearly be 

beneficial and should become available. As satellite remote sensing evolves, higher spatial 

resolution data (eg, 3 × 3 km and 1 × 1 km) will further reduce exposure error. Our mortality 

datasets did not include changes in residence, which will introduce some exposure 

misclassification into our study.

In conclusion, our novel prediction models, making use of satellite data on air pollution, 

perform well in assessing short-term and long-term effects of PM2.5 exposure. This enables 

us to examine entire populations, including exurban and rural locations, with better spatial 

resolution and tighter CIs for the time-series estimates. The larger effect-size estimates seen 

in recent cohort studies (using geographically resolved chronic exposures) are supported in 

this analysis for a whole population. This modeling approach presents new opportunities to 

study the effects of both short- and long-term particle exposures on human health.
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FIGURE. 
Map of the study area showing the dithered residential location of a subset of mortality cases 

over a sample PM2.5 (μg/m3) 10 × 10 km pollution grid for a sample day (01/07/2001).
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TABLE 1

Descriptive Statistics: Deaths in Eastern Massachusetts, 2000–2008

Characteristic No. (%)

Sex

 Men 216,717 (46)

 Women 251,852 (54)

Race

 White 438,402 (94)

 Black 17,479 (4)

 Other 12,689 (3)

Education (years)

 0–12 372,848 (80)

 >12 95,722 (20)

Age (mean years) 75.0
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TABLE 3

ORs for Cardiovascular Disease and Respiratory Mortality for Every10 μg/m3 Increase in Long-Term PM2.5 

Exposure

PM2.5 Exposure Type Odds Ratio (95% CI)

All mortality cases long-term PM2.5 1.6 (1.5–1.8)

All mortality cases local PM2.5 1.4 (1.3–1.5)

Urban areas 1.7 (1.5–1.9)

Rural areas 1.3 (1.1–1.6)

High education 1.4 (1.2–1.6)

Low education 1.9 (1.60–2.1)
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